

MAPPER: High throughput Maskless Lithography

Almut Stegemann

CEA- Leti Lithography workshop: From optical to Alterative patterning technologies

Introduction

- Applications
- Wrap up and conclusions

1.1

Introduction

- Applications
- Wrap up and conclusions

Today's presenter

Almut Stegemann

- 06/2014- today working at Mapper
- 2014- 2017 Process Development Engineer for MEMS process
- 2017- today Liasion at Leti to support collaboration projects between Mapper and Leti

Mapper makes e-beam direct write for volume manufacturing possible

Traditional e-beam

1 electron beam per system

No full wafer placement accuracy

< 25 full 300 mm wafers per month

Throughput proportional to pattern density and resolution

Lab use only

Mapper FLX

65,000 beamlets per unit

Compatible, optical, alignment

Matching to DUV and 193i

> 450 wafers per month (300 mm)

Throughput independent of pattern density and resolution

Down to 40nm logic node +

FLX extension

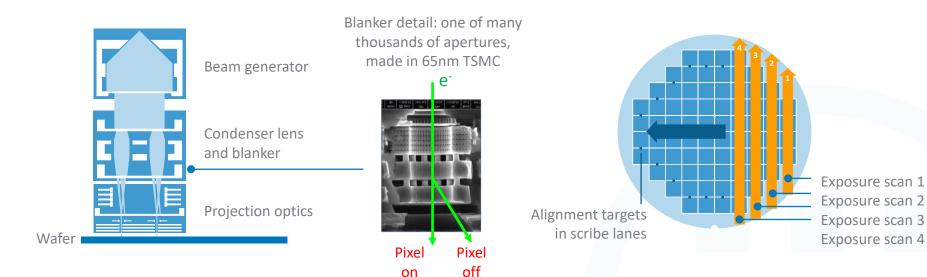
> 1,000,000 beamlets per unit

Evolution on the same platform

Unit clustering for >40 wph

>5,000 wafers per month/unit

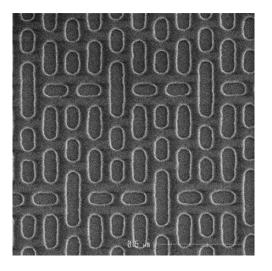
It takes minutes only to expose a wafer at <50nm


28nm logic node and below

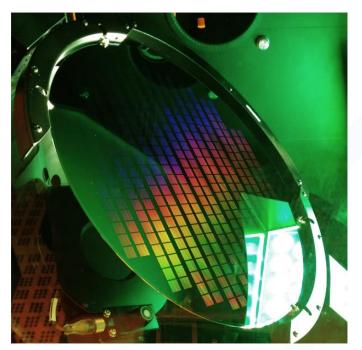
+

Ultra-advanced Mapper roadmap logic / cutting Productivity Version: December 2017 and CDu 5.2Mbm **Capacity ramp-up Unique ICs Photonics** N40 logic 1.6Mbm **Spectral filters** Pilot R&D Process 65,000bm III-V 19 wpd Clustering development **Feasibility** FLX-1300 series FLX-1200 series **Pre-alpha** series **Demonstrator** 2005 - 2007 2008 - 2011 2012 - 2018 2019

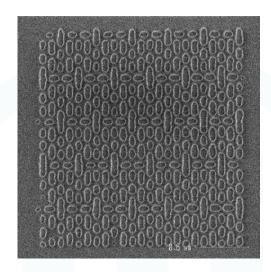
Basic operations of Mapper FLX



- The electron optics have no central crossovers making them intrinsically insensitive to Coulomb forces (electron repulsion)
- The electron optics are modular and much cheaper than high-NA DUV optics, and can be replaced or upgraded in the field


- Wafer exposure happens one column of fields at a time and always in the same direction – no need to meander
- Focus / leveling is performed during stage fly-back to reduce metrology overhead
- Each column of fields is aligned separately, with dedicated alignment targets

Status FLX-1200: full column operational at CEA-LETI as of August 2017


65k beams in 13x2 mm² slit. First exposures after upgrade to fully programmable blanker:

60 nm HP (N40)

Getting close to covering a full 300 mm wafer in 60 minutes

40 nm HP (sub N28)

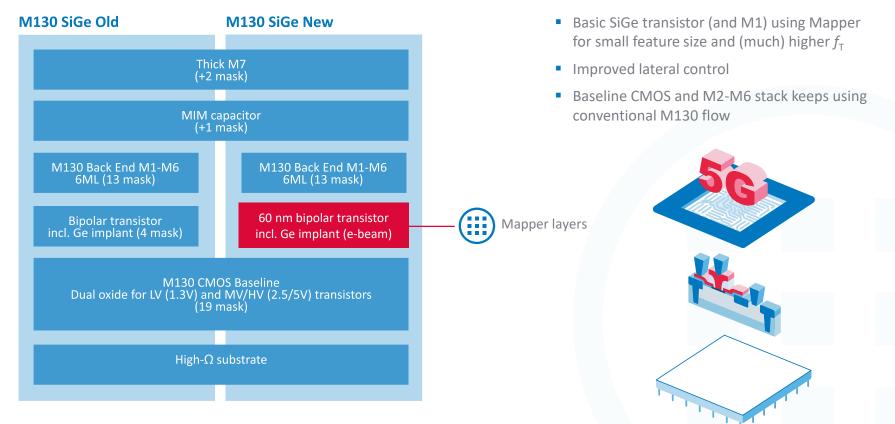
Introduction

Applications

Wrap up and conclusions

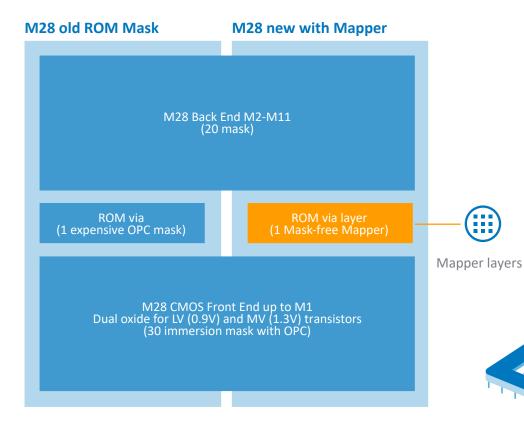
1 47

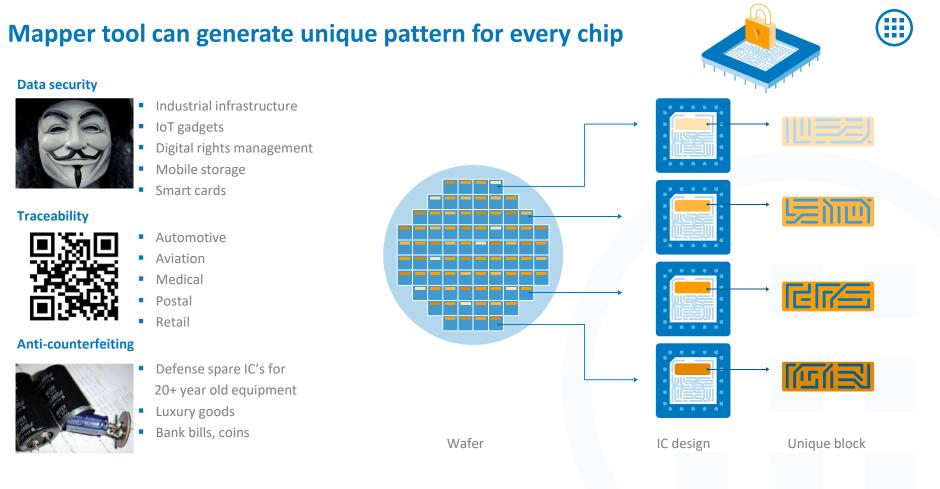
Many different end markets targeted by Mapper



Mapper applications			Тооі	Description
R&D, prototyping and technology evaluation		FLX-1300	 Use in research labs/fabs for scientific experiments, prototyping and ultra-small-scale series production 	
	Fab Capability expansion	Defense and high-security applications	FLX-1300	 Use of maskless litho for small-series production (e.g., chip emulation) and to avoid external treatment of design data in mask shops
Mapper market -+		III-V photonics devices & circuits	FLX-1300	 Use for producing III-V photonics circuits and passive devices, avoiding mask cost and enabling new device design features that cannot be produced with mask-based lithography
potential		Specialty silicon circuitry	FLX extension	 Use for small-series products for specialty applications in silicon, as a low-cost replacement of a mask-based system
-0	— III) Integrated CMOS sensor optics		FLX-1300	 Use for novel optical filters/elements that are directly integrated on top of a silicon CMOS sensor that cannot be produced using mask-based optical lithography
	Truly unique ICs	RFID	FLX-1300	 Use for 1 layer per chip creating unique, hard-wired ID for RFID tag to be used as trusted root of trust for security applications
		Scale-up across applications	FLX extension	 Embedding of unique, hard-wired IDs into security chips across different applications and uses (e.g., smart cards, IoT,)

CEA- Leti Alterative Lithography workshop


Technology migration with Mapper: <90nm SiGe technology on 8"


Technology migration with Mapper: ROM and structured ASIC

Mapper layer replaces very expensive ROM-via programming layer in nodes where Flash is not available

- Classical optical mask very expensive due to closely spaced repetitive via pattern
- Mapper has no problem with these patterns and could even allow smaller ROM dimensions
- Mapper layer has a much faster turn-around time due to 100% software; one day cycles possible
- Eliminate need to add external memory → simpler and lower cost devices

CEA- Leti Alterative Lithography workshop

Introduction

- Applications
- Wrap up and conclusions

Wrap up and conclusions

Roadmap:

- FLX-1300: step in manufacturability, availability, overhead reduction
- FLX-1300: will support various wafer sizes and substrates
- Path to 1.6M and 5.2M beams to improve productivity and CDu

Application highlights:

- Fab capability expansion
- Truly unique IC's

